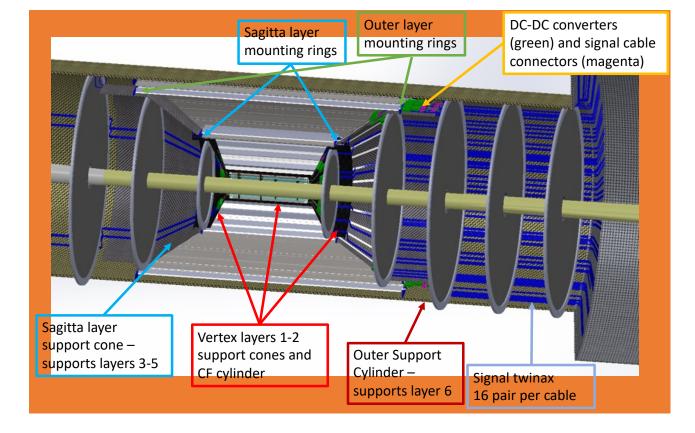
Some thoughts/updates

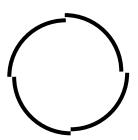

Nikki Apadula eIC RNC meeting March 1, 2022

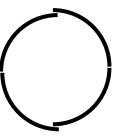
EIC Silicon Considerations

Vertex layers vs reticle size

Some considerations for tiling disks

Jim Fast (JLab)

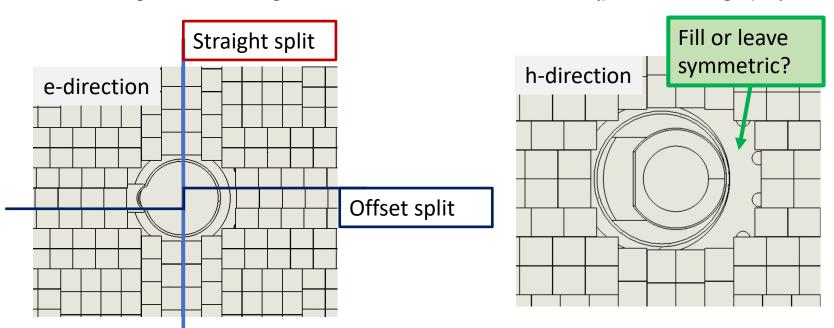

Vertex layer radii vs reticle width

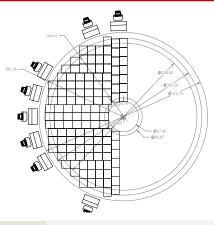

- For curved silicon with a reticle width, w, the radii, R, of the vertex layers must be:
 - $-R=n^*w/\pi$, where n is an integer (I have imposed an even split of halves around beampipe)
- ER1 sensors are planned to have *w*=14 *mm*
 - —Well matched to ALICE desired radii (n=4,5,6 provide R=17.8, 22.3, 26.7 mm)
- EIC L0 target is 33 mm (this is also lower limit)
 - -n=7 implies R=31.2 mm too small for EIC
 - -n=8 implies R=35.7 mm smallest radius possible for EIC L0 using ER1 sensor width
- Optimized reticle width for EIC: *w*=17.6 *mm*
 - -CORE/ECCE-like layout: R=33.6, 50.4, 84.0 mm for n=6,9,15, respectively.
 - Note that these are all diced 3-wide with m=2,3,5 pieces in φ per half shell.
 - -ATHENA-like layout: R=33.7, 44.9, 56.1 mm for n=6,8,10, respectively
 - Note that these are all diced 2-wide with m=3,4,5 pieces in φ per half shell.
- ALICE with *w*=17.6 mm reticle width (target radii are 18, 24, 30 mm)
 - $-R=16.8,\ 22.4,\ 28.0\ \text{mm}$ for $n=3,4,5;\ \text{I}$ suspect $R=16.8\ mm$ is too small for ALICE beam pipe
- Joint EIC/ALICE optimization requires narrower sensors, e.g. *w*=9.5 *mm*
 - For ALICE, R=18.1, 24.2, 30.2 mm for n=6,8,10
 - For EIC, R=33.3, 45.4, 54.4 mm for n=11,15,18 or R=33.3, 48.4, 84.7 mm for n=11,16,28
 - Having a large prime number is not ideal as it implies multiple dice width in L0, e.g. 4+3+4 = 11

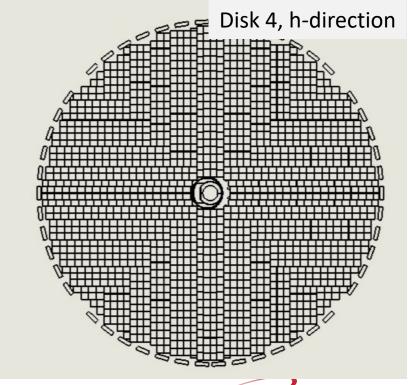
Reticle width cont.

- Simulations needed?
 - Physics implications with the larger radii
 - Physics implications with a small overlap in some regions

Staves – how to do dicing

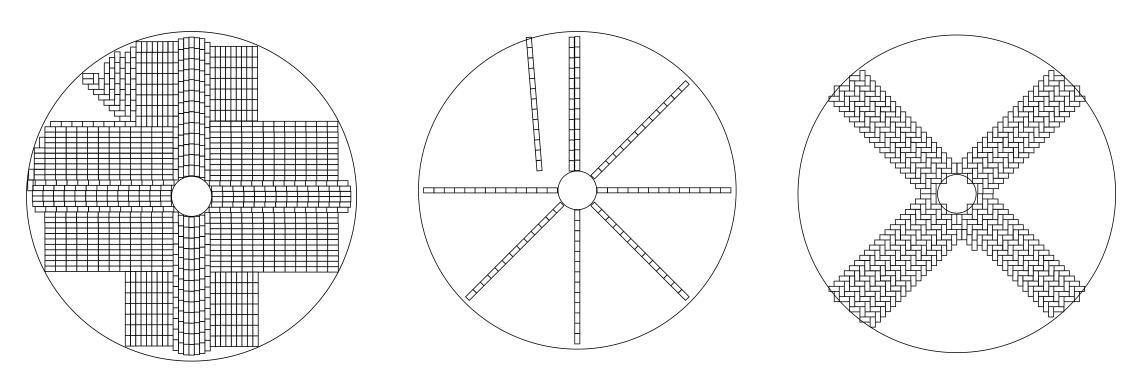

- Assuming *w*=17.6 *mm* reticle (optimized for EIC)
- For CORE/ECCE, dice stave sensors 3-reticle wide (52.8 mm dice)
 - -Build all staves at this width
 - CORE 10, 16, 22 per half cylinder
 - ECCE 12, 13 per half cylinder
- For ATHENA, dice stave sensors 4-reticle wide (70.4 mm dice)
 - -5, 6, 8 staves per half cylinder
 - Could dice 2-reticle wide and use 10, 12, 16 staves per half if more cylindricity is desired
- In Z, dicing is going to be driven by yield. If yield is very high


To do: Stave dicing with the 14 mm reticle size?
Simulations with these large width staves → is more cylindricity needed?



Disks – a bit of a mess

- I have taken a crack at this and frankly don't see a great path here
- For each disk, given the unit sensor (reticle) size:
 - Start around beam pipe opening to try to minimize gaps
 - There are two basic configurations: straight split or offset split
 - Stitch outwards, ideally to edge of disk, in vertical and horizontal directions
 - Use "herringbone" pattern to fill in sectors at 45 degree angles
 - Significant edge effects for smaller disks (perimeter gaps)



Discs – very much a mess

- I took a stab w/the 14 mm width and 28 mm length
- As I described to my kids, I am trying to make a circle out of rectangles

Next steps/other

- Stave dicing options with 14 mm size
- More disc layouts
 - Double sided?
- Simulations
 - Vertex layers: overlap, larger radius
 - Stave layers: cylindricity
 - Disc: overlap regions, dead areas
- Meeting with the engineers next week
 - Short term & long term plans
- ALICE ITS3
 - Positive response from Alex & Magnus
 - Still some planning on their end
 - Working under ALICE, eICSC, or both? (I believe we fall under both)