Low p PID with ps-TOF detector at EIC

EIC RNC meeting (04/26/2022)

Wenqing Fan, LBNL

EICUG YR

hysics r	equirements	:		
Rapidity	$\pi/K/p$ and $\pi0/y$	e/h	Min pT (E)	
-3.5 – -1.0	7 GeV/c	18 GeV/c	100 MeV/c	
-1.0 - 1.0	8-10 GeV/c	8 GeV/c	100 MeV/c	
1.0 - 3.5	50 GeV/c	20 GeV/c	100 MeV/c	
	1			

Threshold (GeV/c) Κ dex π e р 473 0.00048 0.13 0.47 0.88 0.00207 0.57 3.80 .03 2.00 0.00245 4.67 .02 0.69 2.46)0080.01277 3.49 12.34 23.45 0.01527 4.17 14.75 28.03 1.00056 CF_4 (gRICH)

Table 11.23: Table of Cherenkov thresholds for various media.

Ultra-Fast Silicon Detectors: LGAD and SPAD

- AC-LGAD (AC-coupled low gain avalache diodes)
 - R&D goal: <=25ps for timing, 30um for spacial resolution (eRD112)</p>
 - In ECCE: barrel R = 63cm, forward z = 180cm, backward z = -160cm
 - In ATHENA: barrel R = 52cm

- SPAD (single-photon avalanche diodes)
 - * Keeping nice feature of MAPS, and a timing resolution as low as 6.7ps
 - No device suitable for large-scale use has been made yet but early (recent) studies show that <10ps timing resolution is achievable</p>
 - https://arxiv.org/pdf/2111.09998.pdf, Yuan's presentation: https:// conferences.lbl.gov/event/827/contributions/5535/attachments/ 3753/3017/PsMAPSdev.pdf

Toy MC to extract the $\pi/K/p$ separation power

- Throw particles (π , K, proton) of different p and η
 - Calculate time of flight t_{flight} = L/velocity
 - * Truth: $t_0 = 0$, $t_f = t_0 + t_{flight} = L/velocity$
 - $\beta = L^{reco} / [(t_f^{reco} t_0^{reco}) \cdot c]$
 - t_f^{reco} and t₀^{reco}: smear t_f and t₀ by 5, 10, 20, 30, 50 ps
 - L^{reco}: smear L by 0.05%, 0.1%, 1%

More realistic situation: smear L by the uncertainties extracted from full simulation

Extract the high p limit of 3σ separation for different TOF locations

Toy MC to extract the $\pi/K/p$ separation power

- Throw particles (π , K, proton) of different p and η
 - Calculate time of flight t_{flight} = L/velocity
 - Truth: t₀ = 0, t_f = t₀ + t_{flight} = L/velocity
 - $\beta = L^{reco} / [(t_f^{reco} t_0^{reco}) \cdot c]$
 - t_f^{reco} and t₀^{reco}: smear t_f and t₀ by 5, 10, 20, 30, 50 ps
 - L^{reco}: smear L by 0.05%, 0.1%, 1%

More realistic situation: smear L by the uncertainties extracted from full simulation

Extract the high p limit of 3σ separation for different TOF locations

Low p PID at mid-rapidity for 1.4T

- TOF can be complementary to DIRC
 - Particles which can not reach DIRC (not really a problem with 1.4 T)
 - Particles below the DIRC firing threshold (0.47GeV for K, 0.88GeV for p)

Low p PID at forward-rapidity for 1.4T

- TOF can be complementary to dRICH
 - Particles below the dRICH firing threshold (2.46GeV for K, 4.67GeV for p)

Path length uncertainties

- Pathlength uncertainty: 0.05%, 0.1%, 1%
 - The p coverage is sensitive to the path length uncertainty
 - * More realistic smearing on L_{path} will require full simulation to obtain ΔL_{path} (det location, p, η)

Summary

- Closer means low p tracks can easily reach the detector (in barrel region)
- Closer also means smaller area => cheaper
- Better intrinsic timing resolution => push the detector smaller
- Currently AC-LGAD is proposed in ECCE and ATHENA design
 - At least 25ps timing resolution and 30um spatial resolution

