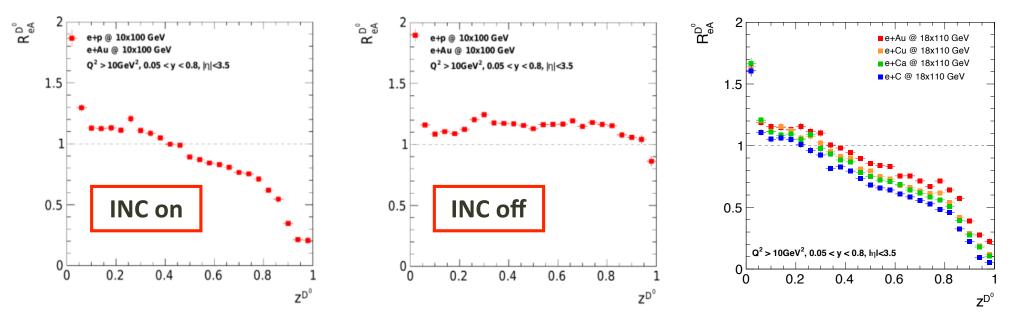

What we know so far (about BeAGLE)

- BeAGLE paper (huge thanks to Yuxiang!)
 - https://arxiv.org/pdf/2204.11998.pdf
 - Documented the "knobs" in BeAGLE and how they are tuned
 - Tuning of default pythia parameters in Sec. III. A
 - Explanations of Intra-nuclear cascade in Sec. II. B
- Energy loss effect is not in the version we are using
 - Code ready in development branch, some additional checks by Carolina before merging into the master branch
 - Github link: https://gitlab.in2p3.fr/BeAGLE/BeAGLE/-/tree/master/PyQM
 - Ref: <u>https://arxiv.org/pdf/2203.16665.pdf</u>


What we know so far (about BeAGLE)

- Discrepancy between BeAGLE ep and Pythia6 ep
 - * Using BeAGLE e+p as baseline fix the weird R_{eA} shape for pions
 - Different parameters for the pythia input card in BeAGLE and PythiaeRHIC
 - Now checking if BeAGLE will agree better with Pythia6 for ep when using the same parameters (and what parameters have the largest impact)
 - Details of tuned parameters and data used for tunning can be found here: https://arxiv.org/pdf/2204.11998.pdf

INC effect and the impact of formation time τ_0

- Intra-nuclear cascade (INC) is the main factor which caused the shape of modification for R_{eA} of charm hadrons
 - Secondary low-energy interactions with spectator nuleons
 - Controled by formation time τ₀ (default = 10fm) and # of generations (default = 25, 0 means no INC)

- Why it has such effect on the charm-hadron production: charm-hadron lose energy during intra-nuclear cascade? How that explains the system size dpendence?
- Now looking into different formation time (0.5fm, 2fm, 10fm, 20fm)

arXiv:2011.14909 Table2

Name	<i>R</i> [fm]	<i>a</i> [fm]	W
²⁸ Si	3.34	0.580	-0.233
³² S	2.54	2.191	0.16
⁴⁰ Ar	3.53	0.542	0
⁴⁰ Ca	3.766	0.586	-0.161
⁵⁸ Ni	4.309	0.517	-0.1308
⁶³ Cu	4.2	0.596	0
⁶³ CuHN	4.28	0.5	0
¹²⁹ Xe	5.36	0.59	0
¹²⁹ Xe ^{**}	5.42	0.57	0
^{186}W	6.58	0.480	0
¹⁹⁷ Au	6.38	0.535	0
¹⁹⁷ AuHN	6.42	0.44	0
²⁰⁷ Pb ^{††}	6.62	0.546	0
²⁰⁷ PbHN	6.65	0.46	0
²⁰⁸ Pb (prot)	6.68	0.447	0
²⁰⁸ Pb ^{‡‡} (neut)	6.69	0.560	0