Towards 3D IP-Glasma

Sangyong Jeon

w/ Scott McDonald and Charles Gale

Department of Physics McGill University Montréal, QC, CANADA

🐯 McGill

Based on NPA 1005, 121771 (2021) (McDonald, Jeon and Gale), and Scott McDonald's thesis

Jeon (McGill)

。王新年_{: King-New-Year}

•壬寅年_{: 1962. Also 2022. Black-Tiger-Year}

• What does 易經 (I-Jing) say about him? - Lots of Trees, Water and Earth Independent. Brilliant. Sensitive. Strong leader. Soft outside, strong inside. Romantic. Could be stubborn (sometimes). Sunny disposition.

。王新年_{: King-New-Year}

•壬寅年_{: 1962. Also 2022. Black-Tiger-Year}

• What does 核易經 (HIJING) say about him? - Lots of Tree(diagram)s. Independent. Brilliant. Sensitive. Strong leader. Soft outside, strong inside. Romantic. Could be stubborn (sometimes). Sunny disposition.

• • • • • • • • • • • • •

Fig. 7 Dijet reduction factor for central U + U collisions at $\sqrt{s} = 200$ GeV/n as a function of the dijet energy $E = P_{T1} + P_{T2}$, for different values of κ_Q/κ_H assuming $\kappa_H = 16$ GeV/fm.

transverse coordinate, ϕ the azimuthal angle of the jet and $\tau_I(r, \phi)$ the escape time. Assuming only Bjorken[31] scaling longitudinal expansion and a Bag model equation of state[31], one can find the time dependence of dE(r)/dx and get the reduction rate of jet production at fixed P_T by averaging over the initial coordinates $(r, \phi)[22]$,

$$R_{AA}(E) = \frac{\sigma^{jet}(E)_{guenching}}{\sigma^{jet}(E)_{no-quenching}}.$$
(11)

In the plasma phase, the temperature decreases as $T(\tau)/T_c = (\tau_Q/\tau)^{1/3}$. According

• First mention of *R_{AA}* I could find.

 Xin-Nian Wang and Miklos Gyulassy, *Jets in relativistic heavy ion collisions* in BNL RHIC Workshop 1990:0079-102 (QCD199:R2:1990)

Jeon (McGill)

3D IP-Glasma

Happy Birthday, Xin-Nian!

祝**你**生日快乐 新年大哥

Thank you.

You have been an inspiration and a big brother to many of us. You still are.

Jeon (McGill)

イロト イポト イヨト イヨト

In a nutshell

 Finite η_s > 0 ⇒ Moving frame with v^z = tanh η_s

The target appears much denser than the projectile (JIMWLK)
 ⇒ Gives the initial condition at η_s and at τ = 0⁺.

• Longitudinal decorrelation is built in.

• • • • • • • • • • • •

CGC & JIMWLK: Work by Venugopalan, McLerran, Jalilian-Marian, Iancu, Weigert, Leonidov, Kovner, Kovchegov, Dumitru, Gelis, Blaizot, Kharzeev, Nardi, Levin, Krasnitz, Nara, Lappi, Mäntysaari and many others.

The η slice initial condition: Phys. Rev. C94, 044907 (2016), Schenke and Schlichting

Jeon (McGill)

In a nutshell

- Pressure evolution is very different than 2D
- Transverse dynamics Same quality
- Longitudinal dynamics: Global observables OK
- Differential observables in Longi.: Compute time hungry calculations

- The world is 3D!
- Extended set of observables
- A lot of important physics in longitudinal dynamics (e.g. JIMWLK evolution, EoS)

McGill

イロト イロト イヨト イヨ

Brief Review of the MV model

• Color sources on the x^+ axis or parallel to it

 $\mathcal{J}^{\mu}_{P} =
ho(\mathbf{x}^{-}, \mathbf{x}_{\perp})\delta^{\mu+}$

- Physics cannot depend on $x^+ \implies$ Solvable
- Gluon field A_1 present only for $x^- > 0$ or t > z
- Colour density distribution

$$\mathcal{P}[\rho] = \mathcal{N} \exp\left(-\int d\mathbf{x}^{-} \int d^{2}\mathbf{x}_{\perp} \frac{\rho_{a}(\mathbf{x}^{-}, \mathbf{x}_{\perp})\rho_{a}(\mathbf{x}^{-}, \mathbf{x}_{\perp})}{2\mu^{2}(\mathbf{x}^{-}, \mathbf{x}_{\perp})}\right)$$

• Saturation scale $Q_s \propto \mu$

Projectile nucleus

Lightcone coordinates: $x^{\pm} = (t \pm z)/\sqrt{2}$

Jeon (McGill)

Brief Review of the MV model

• The MV model contains two separate concepts:

A D b A A b A

- Infinite momentum (Boost invariant) EoM
- Finite saturation scale $Q_s \propto \sqrt{s}^{\lambda/2}$

Projectile nucleus

Jeon (McGill)

• Two nuclei approach accompanied by trailing gluon fields

Web McGill

2

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

After the collision

Middle: Glasma - Result of interaction between Aproj and Atarg

Jeon (McGill)

2D Glasma

Key Idea: Let the two gluon fields from the projectile and the target collide and evolve.

• In the forward light-cone region:

 $[\mathcal{D}_{\mu},\mathcal{G}^{\mu\nu}]=\mathbf{0}$

Initial conditions at $\tau = 0^+$

•
$$\mathcal{A}_i = \mathcal{A}_i^1 + \mathcal{A}_i^2$$

•
$$\mathcal{E}^{\eta} = ig[\mathcal{A}_i^1, \mathcal{A}_i^2]$$

- $\mathcal{E}^i = 0, \, \mathcal{B}^i = 0, \, \mathcal{A}_\eta = 0$
 - \implies No initial transverse fields
- Boost-invariant —> Relevant mostly for the mid-rapidity dynamics

Going 3D

Jeon (McGill)

What we should be doing

- In reality, the nuclei have subluminal velocities v = z/t
- Equivalently, finite (pseudo-)rapidities $\eta = \tanh^{-1} v$
- Boundary at constant $\pm \eta_{\rm beam}$ lines Not any fixed au
- Sources are *not* infinitely thin
- Solve [D_μ, F^{μν}] = J^ν and [D_μ, J^μ] = 0 at the same time.

McGill

- In general, no MV-like solutions exist
- What are the colour currents J^{μ} ?
- Where is the boundary and what is the boundary condition?

McGill

Projectile nucleus

• The MV model contains two separate concepts:

- Infinite momentum (Boost invariant) EoM
- Finite saturation scale $Q_s \propto \sqrt{s}^{\lambda/2}$
- It is a model for finite η_{beam} dynamics which uses the infinite momentum frame evolution as an approximation for the mid-rapidity dynamics

Initial condition in τ

- If the three fireballs all start out at t = 0, z = 0 and evolve exactly the same way (e.g. thermalization), the state of the cyan at t = t_d is the same as the state of the brown and magenta at τ = t_d due to time dilation
- If γ = ∞, then the initial state is infinitely thin
 ⇒ Longitudinal distribution must be uniform
- If γ < ∞, then the initial state has a finite width
 ⇒ Longitudinal distribution does not need to be uniform

What we are doing

- The usual MV-model applies at mid-rapidity where two approaching nuclei have the same speed $v = tanh(\eta_{beam})$.
 - Initial Glasma field is given by $A_i = A_i^P + A_i^T$ where A_i^P and A_i^T are generated by the colour charge densities *observed in the CM frame* or $\eta_s = 0$. $Q_s^P = Q_s^P = Q_s^{CM}$
- Ask: How does the collision look like in a moving frame with the velocity ν = tanh(η_s)?
 - If y_{beam} < ∞, then the projectile is moving with γ_P = cosh(y_{beam} - η_s) < cosh(y_{beam}) and the target is moving with γ_T = cosh(y_{beam} + η_s)
 - Can use the IP-Sat model to calculate $Q_c^P < Q_c^{CM}$ and $Q_c^T > Q_c^{CM}$

What we are doing

- The usual MV-model applies at mid-rapidity where two approaching nuclei have the same speed $v = tanh(\eta_{beam})$.
 - Initial Glasma field is given by $A_i = A_i^P + A_i^T$ where A_i^P and A_i^T are generated by the colour charge densities *observed in the CM frame* or $\eta_s = 0$.
- Ask: How does the collision look like in a moving frame with the velocity v = tanh(η_s)?
 - If y_{beam} < ∞, A_i = A_i^P + A_i^T where A_i^P and A_i^T are generated by the colour charge densities observed in the moving frame with the rapidity η_s. ⇒ JIMWLK

[Phys. Rev. C94, 044907 (2016), Schenke and Schlichting]

• • • • • • • •

JIMWLK Evolution

• Time dilation: We see more denser "real gluons" as $\gamma = \cosh(\eta)$ increases

[Figures from Int. J. Mod. Phys. A, Vol. 28, No. 01, 1330001 (2013), F. Gelis]

Image: A mathematical states and a mathem

Gill

JIMWLK Evolution

Target nucleus moving in the negative z direction with $-\eta_{\text{beam}}$

[Using the method by Lappi and Mäntysaari in Eur. Phys. J. C73 (2013) 2307]

- In the frame moving in the same direction as the target nucleus, the target nucleus looks sparser
- In the frame moving in the opposite direction to the target nucleus, the target nucleus looks denser
 McGill

• • • • • • • •

Conceptually

- JIMWLK: How the gluon density appears in a moving frame
- Finite η_s > 0 ⇒ Moving frame with v^z = tanh η_s
- The target appears much denser than the projectile ⇒ Gives the initial condition at η_s and at τ = 0⁺.
- Longitudinal decorrelation is built in.

CGC & JIMWLK: Work by Venugopalan, McLerran, Jalilian-Marian, Iancu, Weigert, Leonidov, Kovner, Kovchegov, Dumitru, Gelis, Blaizot, Kharzeev, Nardi, Levin, Krasnitz, Nara, Lappi, Mäntysaari and many others

Goals

- Stay as close to the 2D initial conditions as possible
- Energy deposition only when there is overlap

2D Initial conditions

- $\mathcal{A}_i^{P,T} = (i/g) V_{P,T} \partial_i V_{P,T}^{\dagger}$
- $\mathcal{A}_i = \mathcal{A}_i^{\mathcal{P}} + \mathcal{A}_i^{\mathcal{T}}$
- $\mathcal{E}^{\eta} = ig[\mathcal{A}_i^P, \mathcal{A}_i^T]$
- $\mathcal{E}^i = \mathbf{0}, \, \mathcal{A}_\eta = \mathbf{0}$

3D Initial conditions

•
$$\mathcal{A}_i^{\mathcal{P},T} = (i/g) V_{\mathcal{P},T} \partial_i V_{\mathcal{P},T}^{\dagger}$$

•
$$\mathcal{A}^{\mathcal{P},\mathcal{T}}_\eta = (i/g) V_{\mathcal{P},\mathcal{T}} \partial_\eta V^\dagger_{\mathcal{P},\mathcal{T}}$$

•
$$\mathcal{A}_i(\eta_s) = \mathcal{A}_i^{\mathcal{P}}(\eta_s) + \mathcal{A}_i^{\mathcal{T}}(\eta_s)$$

•
$$\mathcal{A}_\eta(\eta_{\mathcal{S}}) = \mathcal{A}^{\mathcal{P}}_\eta(\eta_{\mathcal{S}}) + \mathcal{A}^{\mathcal{T}}_\eta(\eta_{\mathcal{S}})$$

•
$$\mathcal{E}^{\eta}(\eta_s) = ig[\mathcal{A}_i^{\mathcal{P}}(\eta_s), \mathcal{A}_i^{\mathcal{T}}(\eta_s)]$$

• $[\mathcal{D}_{\eta}, \mathcal{E}^{\eta}] + [\mathcal{D}_{i}, \mathcal{E}^{i}] = \mathbf{0}$

Initial energy distribution

イロト イヨト イヨト イヨ

• $\sqrt{s_{NN}} = 2.76 \, \text{TeV}$

• This is within the "plateau"

Strain McGill

э.

Energy distribution after YM evolution

• $\sqrt{s_{NN}} = 2.76 \,\mathrm{TeV}$

• This is within the "plateau"

Jeon (McGill)

Strain McGill

э.

イロト イヨト イヨト イヨ

3D-Glasma Results

Jeon (McGill)

A bit of technical detail

- New implementation of 3D SU(3) real-time CYM in $\tau, \eta, \mathbf{x}_{\perp}$
- Fully in-house code
- Time-evolution method: Leap-frog
- Gauss law solver: non-Abelian Jacobi method
- Running coupling JIMWLK following Lappi and Mäntysaari
- Initial *y* for JIMWLK: ±4.25
- Hydro: MUSIC in 3+1D mode
- Hadronic afterburner: UrQMD
- Going 3D also means two orders of magnitude more compute time...
- More statistics and more centralities coming soon

Field Evolution

• Note the scale - 3D initial energy is much higher

• This is because $E = \int d\eta d^2 x_{\perp} \tau \left(\frac{1}{2} \left((\mathcal{E}^{\eta})^2 + (\mathcal{B}^{\eta})^2 \right) + \frac{1}{2\tau^2} \left(\mathbf{E}_{\perp}^2 + \mathbf{B}_{\perp}^2 \right) \right)$

• In 3D, one *cannot* set $\mathbf{E}_{\perp} = 0$ and $\mathbf{B}_{\perp} = 0$

McGill

Pressure Evolution

- In 2D, $P_L = \epsilon_\eta$ and $P_L = -\epsilon_\eta$ at τ_0
- In 3D, $P_L \approx \epsilon_x + \epsilon_y$ and $P_L \approx \epsilon_x \epsilon_y$ at τ_0
- Note the crossing at the isotropic point $P_T = P_L = 1/3$
- Large au behaviours are similar

Mean pT OK

• • • • • • • • • • •

McGill

ъ

Transverse dynamics

• Needs a small bit of tweaking. For instance the value of η/s – Getting there McGill

Jeon (McGill)

イロト イポト イヨト イヨ

Longitudinal dynamics

Initial hydro condition beyond $y = \pm 4.25$: Smooth fall-off

Rapidity distribution

 Global longitudinal dynamics is being captured

McGill

Longitudinal dynamics

ν₂(η) OK

McGill

Image: A mathematical states and a mathem

New Results – Longitudinal dynamics

- Lower centrality: Fluctuation driven
- Higher centrality: Geometry driven

 v₃: Too correlated at the moment – Need more statistics
 McGill

Non-exhaustive list of 3D models

- Phys. Rev. D 74, 045011 (2006), Romatschke and Venugopalan: 2D initial condition plus η_s dependent factorized random noise.
- Phys. Rev. Lett. 111, 232301 (2013), Epelbaum and Gelis: 2D initial condition plus random initial field for the quantum fluctuations.
- Phys. Rev. C 89, 034902 (2014), Ozonder and Fries: Based on Lam and Mahlon: 2D-like initial condition with boosted Coulomb field for the η_s dependence.
- Phys. Rev. D 94, 014020 (2016), Gelfand, Ipp and Müller: 2D MV model performed in (t, z). The sources move with $v = \pm c$. Spatial geometry provides the η_s dependence.
- Phys. Rev. C 94, 044907 (2016), Schenke and Schlichting: Uses JIMWLK for the 3D structure. 2D initial conditions & 2D evolution for each η_s slice.
- Nucl. Phys. A 1005, 121771 (2021), McDonald, Jeon and Gale: Uses JIMWLK for the 3D structure. 2D initial conditions & Full 3D evolution.

• • = • • =

- Saturation physics provides good picture of initial interactions
- Going 3D is non-trivial but doable
- Good description of 3D physics possible
- A lot of physics to learn: Saturation physics, JIMWLK evolution, ...
- Update coming soon

Blast from the past

Happy Birthday, Xin-Nian!

Jeon (McGill)

3D IP-Glasma