

CCT Progress Update

Diego Arbelaez, Lucas Brouwer, Shlomo Caspi, Dan Dietderich, Ray Hafalia, Scott Myers, Thomas Lipton, Maxim Marchevsky, Matt Reynolds, James Swanson, Marcos Turqueti, Xiaorong Wang, Soren Prestemon, Stephen Gourlay 07/12/2017

Outline

- Basic Parameters
- Fabrication
- Instrumentation
- Test Plan

CCT 3/4 Parameters

- Tested and planned CCT 2-layer series has nearly identical geometry
 - o 90 mm diameter inner bore
 - o 1 m physical length
 - Mandrel grooves for ~10 mm wide and ~1.4 mm thick cable

CCT3/4 Nb₃Sn RRP 54/61 Conductor 0.85 Cu:SC ratio Inner Bore Diameter [mm] 90 Cable Width [mm] 10.1 Cable Thickness [mm] 14 Number of Strands 23 S-glass Braid 0.2 mm thick Cable Insulation Iron Yoke Yes Impregnation Material **CTD-101K** Short Sample Current [kA] 18.3 Short Sample Bore Field [T] 9.9

Office of Science

Magnet Parameters

Magnet Load Line for CCT4

2-Layer CCT Nb₃Sn Plan (CCT Technology Development)

	CCT3	CCT4
Bore size [mm]	90	90
		1.25 mm gap
Groove design	constant width	at pole
	RRP 54/61	RRP 54/61
Conductor	Ta doped	Ta doped
HT Temp [C]	650 -	660
Potting		
configuration	full magnet	full magnet
Ероху	CTD-101K	CTD-101K
Layer-to-layer		
interface	bonded	mold released

CCT4 Mandrels and Winding

- CCT 4 Mandrels have 1.25 mm gap at the pole for cable expansion
- Other features are the same as CCT3
- Cable is wound against the inner surface of the turn at the pole
- Resistance to mandrel > $5 \text{ k}\Omega$
 - Wider groove by 0.1 mm
 - Extra space at the pole

Pole Gaps

CCT4 – Heat Treatment

- Copper wire was inserted into groove to force the cable to the bottom of the channel (same as 10-turn tests)
- Mandrel is wrapped with hose clamps
- Cable stays in channel after heat treatment
- Mandrels distort 0.5 1 mm after heat treatment in the N/S orietation
 - Not yet clear how much influence cable has on distortion as opposed to machining stress
 - May require additional annealing step after grooves are machined to avoid distortions

CCT4 Heat Treatment Configuration

Cable Position After Heat Treatment of CCT4

Mandrel Distortion After Heat Treatment

CCT4 – Coil Preparation

- Glass fiber mat used to fill remaining space in channels
- Nb₃Sn cable spliced with two NbTi lead cables in machined channel
- Voltage taps were soldered at the pole locations using flexible Kapton PCB

Glass Reinforcement

Lead Splice

Voltage Tap Connections

CCT4 – Assembly

- Layers are wrapped with G10 sheet before assembly
- Assembly of layer 1 / layer 2 was difficult due to amount of mandrel distortion
- Cable is protected by mandrel since it is below the surface

CCT4 – Epoxy Impregnation

- Mold release applied between layers
- Two layers and shell impregnated together
- Heaters placed inside the bore and on the shell surface

Test Preparation

- Layer-to-Layer splices were completed
- Voltage tap wires were added and secured
- Acoustic sensors were installed and tested
- Iron yoke was assembled

Instrumentation

- Voltage taps
- Acoustic Sensors on Shell
- Strain gages on Shell (Pole and Midplane)
- Spot Heater and Thermometer in Groove

Spot Heater

Strain Gages

Acoustic Sensors

Voltage Tap Layout

Test Plan

- Installation and electrical checks (5-7 days) (75 % complete)
- Cooldown and system checks (3-4 days projected to start July 16)
- First magnet current cycle (1 day)
- Quench training (~3-4 days)
- Magnetic measurements (1-2 days)
- Magnetic measurements (1-2 days)

