

Unit 9 and 10 Practical superconductors for accelerator magnets

Paolo Ferracin

Lawrence Berkeley National Laboratory (LBNL)

Maxim Marchevsky

Lawrence Berkeley National Laboratory (LBNL)

Ezio Todesco

European Organization for Nuclear Research (CERN)

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

References

- [1] A. Devred, "*Practical low-temperature superconductors for electromagnets*", CERN-2004-006, 2006.
- [2] *"LHC design report v.1: the main LHC ring"*, CERN-2004-003-v1, 2004.
- [3] A. Godeke, "*Performance boundaries in* Nb_3Sn *superconductors*", PhD thesis, 2005.
- [4] M. Wilson, "*Superconducting magnets*", Oxford UK: Clarendon Press, 1983.
- [5] K.-H. Mess, P. Schmuser, S. Wolff, "Superconducting accelerator magnets", Singapore: World Scientific, 1996.
- [6] D. Dietderich, "*Development of High Current Nb₃Sn Rutherford Cables for NED and LARP*", WAMSDO 2008, CERN, Geneva, 2008.
- [7] E. Todesco, "Masterclass Design of superconducting magnets for particle accelerators", <u>https://indico.cern.ch/category/12408/</u>
- [8] Presentations from Luca Bottura and Martin Wilson

References

- Parameterization curves
 - M.S. Lubell, "Empirical scaling formulas for critical current and critical fields for commercial NbTi," *IEEE Trans. Magn.*, Vol. MAG-19 No. 3, pp. 754–757, 1983.
 - L. Bottura, "A practical fit for the critical surface of NbTi," *IEEE Trans. Appl. Supercond.*, Vol. 10, No. 1, pp. 1054–1057, 2000.
 - L.T. Summers, M.W. Guinan, J.R. Miller and P.A. Hahn, "A model for the prediction of Nb₃Sn critical current as a function of field, temperature, strain and radiation damage," *IEEE Trans. Magn.*, Vol. 27, No. 2, pp. 2041–2044, 1991.

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

- For practical applications, superconducting materials are usually produced in small filaments and surrounded by a stabilizer (typically copper) to form a *multifilament wire* or *strand*.
- A superconducting cable is usually composed by several wires: *multistrand cable*.
- In this unit we will describe how and why superconducting cables are fabricated in such a geometry.

- Superconductivity was discovered in 1911 by Kammerling-Onnes who observed that the resistance of a mercury wire disappeared (immeasurably small value) at 4.2 K
 - Not just "little" resistance truly **ZERO resistance**

1. Introduction and history Type I superconductors

- Meissner-Ochsenfeld effect (1933)
- Perfect diamagnetism
 - With *T*<*T_c* magnetic field is expelled
- But, the *B* must be < critical field *B*_c
 - Otherwise superconductivity is lost

- Unfortunately, first discovered superconductors (Type I) with very low B_c (≤ 0.1 T)
 - not practical for electro-magnets

Material	$T_{c}(\mathbf{K})$	$\mu_0 H_0 (\mathrm{mT})$
Aluminum	1.2	9.9
Cadmium	0.52	3.0
Gallium	1.1	5.1
Indium	3.4	27.6
Iridium	0.11	1.6
Lanthanum α	4.8	
β	4.9	
Lead	7.2	80.3
Lutecium	0.1	35.0
Mercury α	4.2	41.3
β	4.0	34.0
Molybdenum	0.9	
Osmium	0.7	~ 6.3
Rhenium	1.7	20.1
Rhodium	0.0003	4.9
Ruthenium	0.5	6.6
Tantalum	4.5	83.0
Thalium	2.4	17.1
Thorium	1.4	16.2
Tin	3.7	30.6
Titanium	0.4	
Tungsten	0.016	0.12
Uranium α	0.6	
β	1.8	
Zinc	0.9	5.3
Zirconium	0.8	4.7

- So, for 40-50 years, superconductivity was a research activity
- Then, in the 50's, **type II superconductors**
 - Between B_{c1} and B_{c2} : mixed phase
 - *B* penetrates as flux tubes: *fluxoids*
 - with a flux of $\phi_0 = h/2e = 2 \cdot 10^{-15} Wb$
- Much higher fields and link between T_c and B_{c2}

 Field penetrated in the form of flux tubes (*fluxoids*), each with a flux of

 $\phi_o = h/2e = 2 \cdot 10^{-15} Wb$

 Observed both in a photo by Essmann & Träuble (1967) and with magneto-optical imaging technique by Oslo University

This photograph shows the triangular pattern of fluxons in a type-II superconductor (see Chapter 12). The pattern is revealed by allowing very small (500 Å) ferromagnetic particles to settle on the surface of a magnetized specimen (lead-indium alloy). The particles locate themselves where the magnetic flux intersects the surface.

http://www.mn.uio.no/fysikk/english/research/gro ups/amks/superconductivity/

Superconductivity Hard superconductors

- ...but, if a current is passed through the type II superconductor under a field >B_{c1}
 - Lorentz force on the fluxoids

• $F = J \times B$

- The force causes a **motion** of tubes
 - Flux motion $(dB/dt) \rightarrow$ voltage $(V) \rightarrow$ dissipation $(V \cdot I)$
- The fluxoids are therefore locked in pinning centers
 - <u>Defects</u> or <u>impurities</u> in the structure: precipitates or grain boundaries
 - Produced during fabrication

Superconductivity Hard superconductors

- The pinning centres exert a pinning force F_p
- As long as $F_p \ge J \ge B$
 - No flux motions (flux tubes pinned) \rightarrow no dissipation
- The critical current density of the superconductor J_c is the current density at which, for a given B and at a given T the pinning force is exceeded by the Lorentz force
- So, there is a **mutual link** between maximum **J**, **B**, and **T**

Superconductivity Critical surface

- A type II material is supercond. below the critical surface defined by
 - Critical temperature *Tc*Property of the material
 - Upper critical field B_{c2}
 Property of the material
 - Critical current density *J_c* Hard work by the producer

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. Nb-Ti, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

2. Superconducting materials Nb-Ti

- **Niobium and titanium** are both soluble and at high temperature they combine in a ductile alloy (called β phase).
 - It is easy to process by **extrusion and drawing** techniques.
- When cooled down to about **9 K** it becomes a type II superconductor.
- Critical temperature T_c and upper critical magnetic field B_{C2} depend on Ti content: the optimal is 46.5-47 in weight %.
 - *T_c* is ~9.2 K at 0 T.
 - *B*_{C2} is **~14.5 T** at 0 K.
- The critical current *J_c* depends on the microstructure.
 - Cold works and heat treatments determine the formations of other phases; in particular the α phase is used for flux pinning.

2. Superconducting materials Nb-Ti

LHC pushed this technology to its limit with 8 T magnets

- Why 8 T and not 15 T ?
- One cannot operate at 0 K, at 1.9 K critical field is 13 T
- Critical field decreases with current density, so practical limit is 10 T
- Some margin must be taken to avoid instabilities, so about 8 T is the limit – we will come on this point

2. Superconducting materials Nb-Ti

- Most widely used superconductor
- Implemented on large scale for the first time in the the Tevatron accelerator, built at Fermilab in the early 80s
- In High Energy Physics, used also for all the post-Tevatron accelerators
 - HERA at DESY
 - RHIC at BNL
 - SSC (project canceled in 1993)
 - LHC at CERN
- Other important applications
 - MRI/NMR magnets
 - **Fusion magnets** (Tore Supra, France).
- The cost is ~ 200 US \$ per kg of wire (about 1 euro per m of strand)

2. Superconducting materials Nb₃Sn

- Niobium and tin can form an intermetallic compound, with the formula Nb₃Sn, from the A15 family (like Nb₃Al).
- When cooled down to about **18** K it becomes a type II superconductor.
- Critical temperature T_{C0m} and upper critical field B_{C20m} depend on Sn content: the optimal is 20-25 in weight%.
 - T_{C0m} is ~18 K at 0 T and zero strain.
 - B_{C20m} is ~28 T at 0 K and zero strain.
- The critical current *J*_c depends on the microstructure (grain structure).
 - High J_c obtained with grains from 30 to 300 nm

2. Superconducting materials Nb₃Sn

- Nb₃Sn is **brittle**
 - Cannot be extruded as Nb-Ti.
 - Its formation must occur only at the end of the cable and/or coil fabrication process.
- In addition, it is **strain sensitive**
 - critical parameters $\leftarrow \rightarrow$ applied strain
- Used in
 - **NMR**, with field of about 20 T
 - Model coils for ITER
 - High energy physics (R&D)
- The cost is approximately ~1500 US \$ per kg of wire.
 - ~5 euro per m of strand

2. Superconducting materials Nb-Ti vs. Nb₃Sn

Superconducting Accelerator Magnets, June 20 - July 1, 2022

2. Superconducting materials Nb-Ti vs. Nb₃Sn

2. Superconducting materials Critical surfaces

- The critical surface defines the boundaries between superconducting state and normal conducting state in the space defined by temperature, magnetic field, and current densities.
- The surface, determined experimentally, can be fitted with parameterization curves.

Nb-Ti parameterization curve (LHC dipole)

Nb-Ti parameterization

• Temperature and field dependence of $\rm B_{C2}$ and $\rm T_{C}$ are provided by Lubell's formulae:

$$B_{C2}(T) = B_{C20} \left[1 - \left(\frac{T}{T_{C0}}\right)^{1.7} \right] \qquad T_C(B)^{1/1.7} = T_{C0} \left[1 - \left(\frac{B}{B_{C20}}\right)^{1/1.7} \right]$$

where B_{C20} is the upper critical flux density at zero temperature (14.5 T), and T_{C0} is critical temperature at zero field (9.2 K)

• Temperature and field dependence of *Jc* is given by Bottura's formula

$$\frac{J_{C}(B,T)}{J_{C,ref}} = \frac{C_{NbTi}}{B} \left[\frac{B}{B_{C2}(T)}\right]^{\beta_{NbTi}} \left[1 - \frac{B}{B_{C2}(T)}\right]^{\beta_{NbTi}} \left[1 - \left(\frac{T}{T_{C0}}\right)^{1.7}\right]^{\gamma_{NbTi}}$$

where J_{C,Ref} is critical current density at 4.2 K and 5 T (3000 A/mm²) and C_{Nb-Ti} (27 T), α_{Nb-Ti} (0.63), β_{Nb-Ti} (1.0), and γ_{Nb-Ti} (2.3) are fitting parameters.

Nb₃Sn parameterization curve (typical values for HEP magnets)

- Nb₃Sn parameterization
 - Temperature, field, and strain dependence of *Jc* is given by Summers' formula

$$J_{C}(B,T,\varepsilon) = \frac{C_{Nb_{3}Sn}(\varepsilon)}{\sqrt{B}} \left[1 - \frac{B}{B_{C2}(T,\varepsilon)} \right]^{2} \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \right]^{2} \right]^{2}$$
$$\frac{B_{C2}(T,\varepsilon)}{B_{C20}} = \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \right] \left\{ 1 - 0.31 \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \left[1 - 1.77 \ln \left(\frac{T}{T_{C0}(\varepsilon)}\right) \right] \right\}$$
$$C_{Nb_{3}Sn}(\varepsilon) = C_{Nb_{3}Sn,0} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)^{1/2}$$
$$B_{C20}(\varepsilon) = B_{C20m} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)$$
$$T_{C0}(\varepsilon) = T_{C0m} \left(1 - \alpha_{Nb_{3}Sn} |\varepsilon|^{1.7} \right)^{1/3}$$

where α_{Nb3Sn} is 900 for ε = -0.003, T_{Com} is 18 K, B_{C20m} is 27.6 T, and $C_{Nb3Sn,0}$ is a fitting parameter equal to 4310000000 AT^{1/2}m⁻² for a *Jc*=2900 A/mm² at 4.2 K and 12 T.

Assume $\varepsilon = 0.000$

2. Superconducting materials from Cu to Nb₃Sn

• Typical operational conditions (0.85 mm diameter strand)

Superconducting Accelerator Magnets, June 20 - July 1, 2022

2. Superconducting materials from Cu to Nb₃Sn

Typical operational conditions (0.85 mm diameter strand)

Superconducting Accelerator Magnets, June 20 - July 1, 2022

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. Nb-Ti, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

- The superconducting materials used in accelerator magnets are
 - subdivided in filaments of small diameters

- **twisted** together
- embedded in a **copper matrix**

• Filament size: magneto-thermal instabilities (flux jumps)

- Let's use the critical state model (CSM): a superconductor carries either current at j_c or no currents at all
- Let us consider a simple geometry of a infinite slab of superconductor, of thickness 2*d* and we bring the external field to *B*_{ext}
- A j_c over a thickness of Δx start flowing to shield the internal part of the slab
 - $B_{ext} = \mu_0 j_c \Delta x$
- Since superconducting, this is a persistent current
- The maximum field that can be shielded is the penetration field

•
$$B_p = \mu_0 j_c d$$

by E. Todesco

• Filament size: magneto-thermal instabilities (flux jumps)

- If the external field increase further, the current cannot shield anymore and the field start increasing inside the slab
 - $B(x) = B_{ext} \mu_0 j_c x$
- Now let's have an increase of temperature ΔT_0 (local heat deposition by the beam, or mechanical movements and friction)
- This induces a reduction of critical current density
- Less critical current means less shielding, and therefore a change of magnetic field in the superconductor

• Filament size: magneto-thermal instabilities (flux jumps)

• The change of magnetic field flux induces a voltage according to Maxwell

$$F = \hat{0} B ds \qquad V = \frac{dF}{dt}$$

- The voltage and current induce a dissipation *VI*
- The dissipation induces heat and a change of temperature ΔT_1
- This induces a further reduction of critical current density..... $\Delta T_2 \dots \Delta T_3 \dots$
- If the sum $\Sigma \Delta T_k$ converges we are stable, otherwise there is a mechanism providing a divergence of temperature

• Filament size: magneto-thermal instabilities (flux jumps)

• Stability criteria

$$\frac{d}{2} < \frac{1}{j_c} \sqrt{\frac{3\gamma C_p \left(T_c - T\right)}{\mu_0}}$$

- *C_p*: specific heat
- *J_c*: critical current density
- γ : density
- T_c -T: difference between operational temperature and critical temperature
- Finer superconductor more stability
- Larger critical current less stability
- Filament diameters are usually less than 50 μm.

٠

• Filament size: superconductor magnetization \rightarrow field errors

- When a filament is in a varying *B*_{*ext*}, its inner part is shielded by currents distribution in the filament periphery
 - They **do not decay** when B_{ex} is held constant \rightarrow **persistent currents**

• We can define a magnetization (magnetic moment per unit volume $[J/T/m^3)$ for a filament with diameter d_f when fully penetrated

$$M_s = \frac{4}{3\pi} J_c a = \frac{2}{3\pi} J_c d_f$$

- Perturbation of the magnetic field \rightarrow Field errors
- Finer superconductor, smaller critical current, less field errors
 - LHC filament diameter 6-7 μ m, HERA filament diameter 14 μ m.

 Filament size: superconductor magnetization → AC losses within the filaments

• We can define a magnetization (magnetic moment per unit volume $[J/T/m^3)$ for a filament with diameter d_f when fully penetrated

$$M_s = \frac{4}{3\pi} J_c a = \frac{2}{3\pi} J_c d_f$$

• This produce an AC loss power (W/m³)

$$P = \dot{B}M = \frac{4}{3\pi} \dot{B}J_c a = \frac{2}{3\pi} \dot{B}J_c d_f$$

• Again, finer superconductor, smaller critical current, less AC losses within the filament

- Filament size: some examples
- Nb-Ti:
 - for the LHC main magnets filaments of 6-7 μm were used
 - For SIS-300 (fast ramped magnet) filament of 3 μm was used
- Nb_3Sn :
 - Today RRP technology can reach a minimum of 45 μ m, PIT a bit less
 - LARP initially used a 70 μm (54/61 RRP), and then a 50 μm (108/127 RRP)
 - HL-LHC relies on RRP 108/127, and also used PIT with finer filaments (45 μm)

37

• Filament twist: AC losses between the filaments

- When a multi-filamentary wire is subjected to a time varying magnetic field, current loops are generated between filaments.
- If filaments are straight, large loops with large currents → ac losses
- If the strands are magnetically coupled the effective filament size is larger → flux jumps
- Filaments are **twisted** to reduce the AC loss power (P_e [W/m³]) with ρ_t resistivity across matrix and p_w wire twist pitch

$$P_e = \dot{B}M_e = \dot{B}^2 \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2 = \frac{\dot{B}^2}{\mu_o} 2\tau$$

• Twist pitch p_w of the order of 20-30 times of the wire diameter.

- Strand diameter: magneto-thermal instabilities (self-field instability)
 - When a transport current is ramped-up, the current flows only in the outermost filaments, with a *j*_c (again the CSM)
 - Similarly to the flux jump described before....thermal input \rightarrow reduction $j_c \rightarrow \Delta \Phi \rightarrow VI \rightarrow \rightarrow$
 - A simplified criterion:

$$\beta = \mu_0 \lambda^2 \left| \frac{dj_c}{dT} \right| \frac{R^2}{\upsilon} j_c \le \beta_c = \left\{ -\frac{1}{2} \ln(\varepsilon) - \frac{3}{8} + \frac{\varepsilon^2}{2} - \frac{\varepsilon^4}{8} \right\}^{-1}$$

- Where λ is the superconductor fraction, ν volumetric specific heat of the strand, R strand radius, $I I/I_c 1 \epsilon^2$
- Usually strand are within 0.5 and 1.1 mm diameter.

See work by B. Bordini

- Strand diameter: some examples
- Usually between 0.5 mm and 1.1 mm
 - 0.48-mm-diameter Nb-Ti strand used in LHC matching sections MQM and MQY magnets, in HL-LHC used for nested correctors MCBXF (CIEMAT, Spain)
 - LHC Nb-Ti strand for main dipoles:
 - 0.825-mm-diameter
 - 1.065-mm-diameter
 - Nb₃Sn strands:
 - 0.7 mm diameter for TQ, 11 T
 - 0.8 mm diameter for HD2, HQ
 - 0.85 mm diameter for MQXF
 - 1.0 mm for Fresca2, MCBPCTD
 - 1.25-mm-diameter strand proposed for NED Nb₃Sn magnet, very rigid and difficult to wind – used in racetrack coils
 - Large diameter strand also suffer from larger instabilities

• Cu matrix

- Superconductors have a very high normal state resistivity. It can be shown that a filament of Nb-Ti, if quenched in free space, could reach **very high temperatures** in few ms.
- If the filament is embedded in a copper matrix, when a quench occurs, the **current redistributes** in the low-resistivity matrix and the peak temperature can typically be maintained below 300 K.

- The copper matrix facilitates quench protection: it allows the quench to **propagate** and it provides time to act on the power circuit.
- In the case of a small volume of superconductor heated beyond the critical temperature (for instance because of a flux jump), the current can flow in the copper for a short moment, allowing the filament to **cool-down and recover** superconductivity.
 - The matrix also helps stabilizing the conductor against flux jumps (dynamic stability).

- **Cu matrix:** some examples
- Copper ratio definition
 - Cu/non-Cu of x means that in the strand cross-section one has a quantity 1 of superconductor and a quantity x of Cu
 - Example: Cu/non-Cu = 2 means 1/(1+2) = 33% of superconductor and 2/(1+2) = 67% of Cu
- Usually between 1 and 2
 - Corrector magnets where current density is not critical can have much larger (above 2)
 - For main magnets current density is critical, but one needs some Cu to stabilize and protect the magnet
 - LHC dipoles: 1.65 (inner layer) and 1.95 (outer layer)
 - HL-LHC: 1.1 (11 T) and 1.2 (MQXF)
 - LARP TQ: 0.89
 - A ratio of 0.4 was used (successfully) in D20, a short model magnet not viable for long magnets
- Cu RRR (the ratio of Cu resistivity at 293 K to the resistivity at 4.2 K)
 - The residual resistivity ratio of copper is an important parameter for stability larger than 100 in cables, larger than 150 in wires

42

• Filament size

- Flux jumps
- Magnetization
 - AC losses within filament
 - Persistent current (effect on magnetic field)
- Filament twisting
 - AC losses
 - Flux jumps (less filament coupling)
- Strand size
 - Self field stability

• Cu matrix

- Quench protection/stability
- Flux jump and selffield

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. Nb-Ti, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

- The fabrication of Nb-Ti wire starts from the production of Nb-Ti ingots (with a 200 mm diameter and 750 mm height).
- A monofilament billet is assembled, extruded, and drawn down in small pieces (monofilament rods) about 800 mm long and 50 mm in diameter.

Superconducting Accelerator Magnets, June 20 - July 1, 2022

3. Multifilament wires Fabrication of Nb-Ti multifilament wires

- Monofilament rods are stacked to form a multifilament billet, which is then extruded and drawn down.
- Heat treatments are applied to produce pinning centers (α-Ti precipitates).
- When the number of filaments is very large, multifilament rods can be re-stacked (double stacking process).

3. Multifilament wires Fabrication of Nb-Ti multifilament wires

- The **copper to superconductor ratio** is specified for the application to ensure quench protection, without compromising the overall critical current of wire.
- The **filament diameter** is chosen to minimize flux jumps and field errors due to persistent currents, at the same time maintaining the wire processing cost down.

- The **inter-filament spacing** is kept small so that the filaments, harder then copper, support each other during drawing operation. At the same time, the spacing must be large enough to prevent filament couplings.
- A **copper core and sheath** is added to reduce cable degradation.
- The main manufacturing issue is the **piece length**.
 - It is preferable to wind coils with single-piece wire (to avoid welding).
 LHC required piece length longer than 1 km.

- Since Nb₃Sn is brittle, it cannot be extruded and drawn like NbTi. It must be formed at the end of the fabrication of the cable (or the coil).
- The process requires **several steps**:
 - Assembly multifilament billets from Nb₃Sn precursor (CuSn and Nb).
 - Fabrication of the wire through extrusion-drawing technique.
 - Fabrication of the cable.
 - Fabrication of the coil: two different techniques
 - "Wind & react" (more common)
 - First coil winding and then formation of Nb₃Sn
 - "React & wind"
 - First formation of Nb₃Sn and then coil winding

- During the "reaction", the CuSn and Nb are heated to about 600-700 C in vacuum or inert gas (argon) atmosphere, and the Sn diffuses in Nb and reacts to form Nb₃Sn.
- There are 4 main types of processes to form Nb₃Sn wires.

Bronze process

- Nb rods are inserted in a bronze (CuSn) matrix. Pure copper is put in the periphery and protected with a diffusion barrier (Ta) to avoid contamination.
- Advantage: small filament size
- Disadvantage: limited amount of Sn in bronze and annealing steps during wire fabrication to maintain bronze ductility.
- Non-Cu *J_C* up to 1000 A/mm² at 4.2 K and 12 T.

50

Internal tin process

- A tin core is surrounded by Nb rods embedded in Cu (Rod Restack Process, RRP) or by layers of Nb and Cu (Modify Jelly Roll, MJR).
- Each sub-element has a diffusion barrier.
- Advantage: no annealing steps and not limited amount of Sn
- Disadvantage: small filament spacing results in large effective filament size (50 μm) and large magnetization effect and instability.
- Non-Cu J_C up to 3000 A/mm² at 4.2 K and 12 T.

Superconducting Accelerator Magnets, June 20 - July 1, 2022

• Powder in tube (PIT) process

- NbSn₂ powder is inserted in a Nb tube, put into a copper tube.
- The un-reacted external part of the Nb tube is the barrier.
- Advantage: small filament size (30 μm) and short heat treatment (proximity of tin to Nb).
- Disadvantage: fabrication cost.
- Non-Cu J_C up to 2400 A/mm² at 4.2 K and 12 T.

A. Godeke, [2].

• Reaction of a PIT wire:

A. Godeke, [2].

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

4. Superconducting cables

Superconducting Accelerator Magnets, June 20 - July 1, 2022

4. Superconducting cables Motivations

- Most of the superconducting coils for particle accelerators are wound from a multi-strand cable.
- The advantages of a multi-strand cable are:
 - reduction of the strand piece length;
 - reduction of number of turns
 - easy winding;
 - smaller coil inductance
 - less voltage required for power supply during ramp-up;
 - after a quench, faster current discharge and less coil voltage.
 - current redistribution in case of a defect or a quench in one strand.
- The most commonly used multi-strand cables are the **Rutherford cable** and the cable-in-conduit.

4. Superconducting cables Motivations

- The strands are **twisted** to
 - reduce interstrand coupling currents (see interfilament coupling currents): losses
 - Considering a cable with N strands
 - transverse field crossover resistance power W.m⁻³

$$P_{tc} = \lambda_{cu} \frac{1}{120} \frac{\dot{B}_t^2}{R_c} \frac{c}{b} p_c N(N-1)$$

• transverse field adjacent resistance power W.m⁻³

$$P_{ta} = \lambda_{cu} \frac{1}{6} \frac{\dot{B}_t^2}{R_a} p_c \frac{c}{b}$$

• parallel field adjacent resistance power W.m⁻³

$$P_{pa} = \lambda_{cu} \frac{1}{8} \frac{\dot{B}_p^2}{R_a} p_c \frac{b}{c}$$

4. Superconducting cables Motivations

• The coupling currents can have a significant impact also on the field quality: ss core to further reduce them

• The twist provide also more mechanical stability for winding

- Rutherford cables are fabricated by a **cabling machine.**
 - Strands are wound on spools mounted on a rotating drum.
 - Strands are twisted around a conical mandrel into an assembly of rolls (Turk's head). The rolls compact the cable and provide the final shape.

58

- How many strands ?
 - As low as 6 (correctors, undulators, subscales...)
 - LHC dipoles had 28 and 36 strand cables
 - Cabling machine at CERN is limited at 40 strands this is the number used for MQXF and 11 T
 - Cabling machine in FNAL is limited by 42 strands
 - Cabling machine in LBNL is limited by 60 strands HD2 cable used 51 strands

- The final shape of a Rutherford cable can be rectangular or trapezoidal.
- The cable design parameters are:
 - Number of wires N_{wire}
 - Wire diameter d_{wire}
 - Cable mid-thickness *t*_{cable}
 - Cable width w_{cable}
 - Pitch length p_{cable}
 - Pitch angle ψ_{cable} (tan $\psi_{cable} = 2 w_{cable} / p_{cable}$)
 - **Cable compaction** (or packing factor) k_{cable}

$$k_{cable} = \frac{N_{wire} \pi d_{wire}^2}{4w_{cable} t_{cable} \cos \psi_{cable}}$$

• Typical cable compaction: from 88% (Tevatron) to 92.3% (HERA).

- The cable compaction is chosen to provide good **mechanical stability** and high current capability at the same time leaving enough space for helium cooling or epoxy impregnation.
- The trapezoidal shape allow stacking cables in an arc-shaped coil around the beam pipe of a dipole or quadrupole.
- When a cable has a trapezoidal (or keystone) shape, the defining parameter is the **keystone angle** φ_{cable} given by

• Cables often exhibit **degradation**: critical current density of a virgin wire before cabling is higher then the one of a wire after cabling.

- Keystone angle
 - Nb-Ti accepts a larger keystone angle it can be order of 1 degree
 - It was 1.25° for inner layer cable, 0.90° for outer layer
 - 2.16° used for MQY inner layer cable
 - For Nb₃Sn 0.7° used in 11 T, 0.4° used in MQXF (larger aperture)

- The size is given after cabling, at room temperature, with some azimuthal pressure: be careful about the following details
 - The level of azimuthal pressure has to be defined (5 MPa ?)
 - Cable could be given at 1.9 or 4.2 K (already with thermal contraction)
 - In case of Nb₃Sn, there is a difference between before/after reaction that can be of few percent
- Pitch length
 - The transposition of the wires makes the cross section composed of elliptic strands, not circular
 - Pitch length *p*_{cable}
 - Pitch angle ψ_{cable} (tan $\psi_{cable} = 2 w_{cable} / p_{cable}$)

• The area if the ellipse is $1/\cos\psi_{cable}$ larger than the area of the strand

- In the cable sides, the **strands are deformed**; the deformation determines
 - a reduction of the filament cross-sectional area (Nb-Ti) or
 - breakage of reaction barrier with incomplete tin reaction (Nb₃Sn).
- In order to avoid degradation
 - The strand cross-section after cabling is investigated
 - Edge facets are measured
 - General rule: no overlapping of consecutive facets
- Keystone angle is usually **limited** to 1 or 2°.
- We define as narrow edge compaction or packing factor the ratio of the area of two non-deformed strands to that of a rectangle with dimensions of the narrow edge thickness times the wire diameter, that is $\pi d/2t_{in}$.
- Usually it ranges from 0.95 to 1.03.

• Bad edge deformation

• Good edge deformation

D. Dietderich, [6].

- Compaction
 - We can distinguish between thickness and width compaction
 - Nb-Ti is more compacted than Nb₃Sn to avoid the danger of roping
 - Nb_3Sn is less compacted than Nb-Ti to avoid the danger of degradation

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

5. Cable insulation

- The **cable insulation** must feature
 - Good electrical properties to withstand high turn-to-turn voltage after a quench.
 - Good mechanical properties to withstand high pressure conditions
 - Porosity to allow penetration of helium (or epoxy)
 - Radiation hardness
- In Nb-Ti magnets the most common insulation is a series of overlapped layers of **polyimide** (kapton).
- In the LHC case:
 - two polyimide layers 50.8 μm thick wrapped around the cable with a 50% overlap, with another adhesive polyimide tape 68.6 μm thick wrapped with a spacing of 2 mm.

70

- In Nb₃Sn magnets, where cable are reacted at 600-700 °C, the most common insulation is **fiberglass**: tape or sleeve or braided.
- Typically the insulation thickness varies between 100 and 200 μm.

Superconducting Accelerator Magnets, June 20 - July 1, 2022

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. Conclusions

- Each strand is characterized by a copper to superconductor (Nb-Ti) or copper to non-copper area.
- Each cable includes **voids**.
- The **insulation** occupies additional area.
- The **filling factor** *k* is defined as the ratio of the superconductor or non copper area to the total area of the cable, including insulation, i.e,

$$\kappa = (N_{wire} A_{sc}) / A_{ins-cable}$$

where N_{wire} is the number of strands per cable, A_{sc} is the area of superconductor per strand, and A_{ins_cable} is the area of insulated cable.

- κ indicates how much area in a coil is covered by current carrying materials.
- Being J_{sc} the current density in the superconductor, we define as the overall current density

$$J_0 = \kappa J_{sc}$$

6. Filling factor

- Let's consider the Nb₃Sn quadrupole magnet TQC.
 - Strand diameter d_{wire} : 0.7 mm
 - *Cu/SC*: 0.89
 - Number of strand per cable *N*_{wire} : 27
 - Cable width w_{cable} : 10.050 mm
 - Cable mid-thickness t_{cable} : 1.260 mm
 - Cable inner edge thickness *t_{cable_in}*: 1.172 mm
 - Cable outer edge thickness *t*_{cable_out} : 1.348 mm
 - Cable insulation thickenss t_{ins} : 0.125 mm
- Therefore
 - $N_{wire} A_{sc} = (N_{wire} \pi d^2_{wire} / 4) / (Cu/SC+1) = 5.498 \text{ mm}^2$
 - $A_{ins_cable} = 15.553 \text{ mm}^2$
 - $\kappa = 0.35$

6. Filling factor

Different j

• $J_{sc} = J_{supercondutor} = I_{strand} / A_{superconductor}$

•
$$J_e = J_{engineering} = I_{strand} / A_{strand}$$

•
$$J_o = J_{overall} = I_{cable} / A_{insulated_cable}$$

Outline

- 1. Introduction and history
- 2. Superconducting materials
 - 1. NbTi, Nb₃Sn, and their critical surfaces
- 3. Multifilament wires
 - 1. Motivations and fabrication
- 4. Superconducting cables
 - 1. Motivations and fabrication
- 5. Cable insulation
- 6. Filling factor
- 7. <u>Conclusions</u>

- In this unit we briefly explained why superconducting materials used in accelerator magnets are
 - subdivided in filaments of small diameters
 - twisted together
 - embedded in a copper matrix
 - and finally combined in a multistrand cable.
- We then described how strands are fabricated and we introduced some parameters used to characterize a superconducting cable
 - Cable compaction *k*_{cable}
 - Keystone angle φ_{cable}
 - Filling factor κ

Superconducting Accelerator Magnets, June 20 - July 1, 2022

- MgB₂ is a recent discovery
 - Discovered in 2001
 - Critical temperature of 39 K, critical field of less than 10 T
 - Anomaly in the classification: low temperature or high temperature superconductor?
 - Low field but low cost and easy manufacturing
 - Interesting for power lines or low field (<10 T) magnets
 - Project for superconducting link in MgB₂ in High Luminosity LHC <u>www.cern.ch/hilumi</u> and A. Ballarino et al., IEEE Trans Appl Supercond **21** (2011) 980-983
 - Technological development of superferric magnet in the HL-LHC framework <u>www.cern.ch/hilumi</u> and M. Sorbi, M. Statera, S. Mariotto et al., IEEE Trans Appl Supercond 29 (2019) 4004505

SUPERCONDUCTIVITY

• BSCCO and YBCO

Critical current density in the superconductor versus field for different materials at 4.2 K [P. J. Lee, et al] https://nationalmaglab.org/images/magnet_development/asc/plots/JeChart041614-1022x741-pal.png Superconducting Accelerator Magnets, June 20 - July 1, 2022 Practical superconductors for accelerator magnets

- BSSCO and YBCO are the two main HTS (high temperature superconductors
 - Discovered in 1988/86
 - Large critical temperature ≈100 K
 - Very large critical field above 150 T
 - Flat critical surface (little dependence on field)
 - Large progress in reaching good current density
 - Both expensive (more than 10 times Nb-Ti ...)
 - Drawbacks:
 - YBCO round wires are not trivial most application on tapes
 - BSCCO requires a heat treatment at 800 C , and 100 bar of oxygen to increase *j*
 - NMR/MRI solenoids with HTS tapes have been developed
- Projects of dipole inserts for accelerator magnets are onging in many labs (LBNL, BNL, CERN, CEA, ...)
 Superconducting Accelerator Magnets, June 20 - July 1, 2022

- For the **large solenoids** in an accelerator experiment, copper around filament may not be enough to avoid overheating after a quench.
 - Large inductance and slow current discharge.
- **Additional stabilizer** (low resistivity material) is added around the strands.
- High purity aluminum is transparent to particles and reduced weight with respect to copper.
- Cable are fabricated by **co-extrusion**. This ensure good contact between strands and superstabilizer.

