

15 T cos-theta dipole demonstrator status

MDP meeting, July 19, 2017

Alexander Zlobin US Magnet Development Program Fermi National Accelerator Laboratory

MDP High Field Dipole Demonstrator design

- > Coil:
 - 60-mm aperture
 - 4-layer graded coil
 - W_{sc} = 68 kg/m/aperture

Cable:

- L1-L2: 28 strands, 1 mm RRP150/169
- L3-L4: 40 strands, 0.7 mm RRP108/127
- SS core
- Insulation: E-glass tape

Mechanical structure:

- Thin StSt coil-yoke spacer
- Vertically split iron laminations
- Aluminum I-clamps
- 12-mm thick StSt skin
- thick end plates and StSt rods
- Cold mass OD<610 mm (VMTF Dewar limit)

SC strand and cable

- Cable parameters
 - L1-L2: 28 strands, 1 mm RRP150/169
 - L3-L4: 40 strands, 0.7 mm RRP108/127
 - 0.025 mm by 11 mm SS core
- Magnet SSL estimated based on the cable test data:
 - \circ **11.05 kA (B**_{ap}=**15.3 T) at 4.5 K**
 - \circ **12.2 kA** (B_{ap}=16.7 T) at 1.9 K.

Procurement: Mechanical stricture

Procurement: Axial support structure

Procurement: Coil components

Cable (FNAL)

- 420 m of 28-strand cable
- 350 m of 40-strand cable + leftover from the 11 T program

Traces (FNAL)

L3/4 parts (FNAL)

L1/2 parts (CERN)

	Pre-series	Series (availability at CERN)			
Saddle	20 March 2017 (all parts accepted, except part 54822)	Parts will be produced until 30/05/2017, company will also do QC, for-crosschecking some parts will be already QC before that date at CERN			
Pole	19 May 2017				
Wedge Ti	No pre-series	30/05/2017 (+2 weeks for measurement at CERN)			
Wedge Discup	No pre-series	30/05/2017 (+2 weeks for measurement at CERN)			
End spacers	-First set of end spacers (non- conform) shipped (arrival at FNAL ~15/03/2017) -Second set measured and accepted (Z7/03/2017)	All parts are produced, some will be measured (9 parts), ~3 weeks for measurements			

Procurement: Coil reaction retort

Standard square tubing

Coil fabrication status: L3/4

Coil #1

- Coil reaction is complete
- 8 witness samples have been tested

Coil #2

- Coil winding and curing is complete
- Short in the transition cable has been found and fixed
- Will be used as a spare coil

Coil #3

- Inner layer was wound and cured
- Outer layer winding is in progress

15 T Dipole Demonstrator: Witness Test Results for Outer Coil HFD-CL2-002

MDP meeting, July 19, 2017

Emanuela Barzi, Daniele Turrioni US Magnet Development Program Fermi National Accelerator Laboratory

10

U.S. MAGNET DEVELOPMENT

PROGRAM

0.7 mm RRP108/127 40-strand cable with SS core

Studies performed on extracted strands

U.S. DEPARTMENT OF ENERGY Office of Science

Witness Sample Location

Pure Argon is fed from the bottle to the coil and tooling first, and to the retort next.

TOOLING

4 samples (1 round + 3 extracted) were placed in a central position with respect to the coil cross section, i.e. where temperature is the lowest.

RETORT

8 samples (2 round + 6 extracted) were placed along the retort.

Heat Treatment Obtained

Internal TC #12 obtained: 72 hr @ 208°C, 48 hr @399°C, 48 hr @ 657°C

Test Results (8 samples tested so far)

EXTRACTED	15044-1			15289		15245-4A		15244-1				
	Tooling		Retort		Tooling		Retort		Retort		Retort	
	Ic, A	Jc, A/mm ²	Ic, A	Jc, A/mm ²	Ic, A	Jc, A/mm ²	Ic, A	Jc, A/mm ²	Ic, A	Jc, A/mm ²	lc, A	Jc, A/mm ²
15 T Field	272	1536	175	991	270	1509	270	1511	262	1488	268	1513
12 T Field	(504)	2847	324	1830	504	2816	504	2817	492	2797	498	2813
n-value (15 T)	((38)		18		(40)		(45)		(42)		-
RRR		86	5	6, 60		130	ç	90, 97	4	9, 84	6	69, 84

Ic (12 T)_Extracted - GOAL = (477 ± 5) A

RRR_Extracted - GOAL = 104 ± 11

Ic (12 T)_Extracted (Tooling) = 504 A Ic (12 T)_Extracted (Retort) = (498 ± 3) A

RRR_Extracted (Tooling) = 108 ± 22 RRR Extracted (Retort) = 74 ± 6

ROUND	15289					
	Τ	ooling	Retort			
	Ic, A	Jc, A/mm ²	Ic, A	Jc, A/mm ²		
15 T Field	277	1550				
12 T Field	516	2882				
n-value (15 T)		(51)				
RRR		175	132, 159			

DEPARTMENT OF

Office of Science

U.S. MAGNET DEVELOPMENT PROGRAM

15 T Dipole Demonstrator: Mechanical Model

MDP meeting, July 19, 2017

Igor Novitski, Charles Orozco US Magnet Development Program Fermi National Accelerator Laboratory

Mechanical Model

MM design:

- iron laminations
- Al I-clamps
- coil-yoke shim
- instrumented "dummy" Al coils (short and full-size)

Goals:

- Test assembly tooling and main components of the mechanical structure
- Develop coil assembly plan and prestress targets
- Compare experimental data with the FEA

Short Mechanical Model

2"-long for Cold Test

- FEA Results
 Verification
- Material Cold Test
 (Stress and
 Displacements vs
 Rad-Shim)
- Instrumentation
 Location

Geometry

Sample Results Images $(\delta_{clamp} = 0.3mm, \delta_{cylinder} = 0mm)$

Sample Results Images ($\delta_{clamp} = 0.3mm, \delta_{cylinder} = 0mm$)

Clamp

Laminations

Model Assembly and Instrumentation

Long Mechanical Model

43"-long model

- FEA Data Verification (Shim Plan)
- Clamping Tooling and Procedure Test
- Instrumentation

Coil-Yoke assembly

Yoke Clamping

Clamping Tooling

15 T dipole schedule

