June 16, 2022 Berkeley Center for Magnet Technology (BCMT) Accelerator Technology and Applied Physics Division (ATAP) Lawrence Berkeley National Laboratory (Slides updated on June 22, 2022)

R&D toward ReBCO high current cable with low ac loss, small SCIF, and high robustness against normal transition 京都

N. Amemiya (Kyoto University)

This work was supported by JST-Mirai Program Grant Number JPMJMI19E1, Japan.

KYOTO UNIVERSITY

大学

References

- [1] N. Amemiya, M. Shigemasa, A. Takahashi, N. Wang, Y. Sogabe, S. Yamano and H. Sakamoto, "Effective reduction of magnetization losses in cop-per-plated multifilament coated conductors using spiral geometry," *Superconductor Science Technology*, vol. 35, no.2, Feb. 2022, Art. no. 025003, doi: 10.1088/1361-6668/ac3f9c.
- [2] M. Shigemasa, Y. Sogabe, A. Takahashi, S. Yamano, H. Sakamoto and N. Amemiya, "Magnetization loss measurements of spiral copper-plated multifilament coated conductors with various filament and conductor widths," *IEEE Transactions on Applied Superconductivity*, vol. 32, no. 6, Sept. 2022, Art no. 8200806, doi: 10.1109/TASC.2022.3170865.
- [3] N. Amemiya, N. Wang, M. Shigemasa, A. Takahashi, Y. Sogabe, S. Yamano and H. Sakamoto, "Measurements of coupling time constants and geometry factors of coupling losses in spiral copper-plated multifilament coated conductors," *IEEE Transactions on Applied Superconductivity*, vol. 32, no. 6, pp. 1-5, Sept. 2022, Art no. 6602005, doi: 10.1109/TASC.2022.3167928.
- [4] N. Amemiya, N. Tominaga, R. Toyomoto, T. Nishimoto, Y. Sogabe, S. Yamano and H. Sakamoto, "Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils," *Superconductor Science Technology*, vol. 31, no. 2, Feb. 2018, Art. no. 025007, doi: 10.1088/1361-6668/aa9d24.
- [5] N. Amemiya, Y. Zhao, X. Luo, G. Xu, Y. Li and Y. Sogabe, "Current-sharing between filaments and voltage current characteristics of copper-plated multifilament coated conductors," *IEEE Transactions on Applied Superconductivity*, vol. 32, no. 6, Sept. 2022, Art no. 8001005, doi: 10.1109/TASC.2022.3168622.
- [6] X. Luo, Y. Zhao, Y. Sogabe, H. Sakamoto, S. Yamano and N. Amemiya, "Thermal Runaway of Conduction-Cooled Monofilament and Multifilament Coated Conductors," *IEEE Transactions on Applied Superconductivity*, vol. 32, no. 4, June 2022, Art no. 6600609, doi: 10.1109/TASC.2022.3141970.

Multifilament ReBCO coated conductors and copper plating

JST

Pros and cons of copper-plated multifilament coated conductor

zone Copper Current sharing in copper **Sobstrate** Current
Jostrate
sharing in adjacent **SHRSEFEDAHETEROR** filament **Fleinseht**

AC loss (and SCIF) can be reduced by striating wide superconductor layers into narrow filaments.

If we plate copper on the entire group of filaments,

copper allows the current sharing and improves the robustness against normal transition.

Changing magnetic field

current

Superconductor filament

Under ac transverse magnetic fields, filaments are coupled by coupling current and behave like a wide monofilament, generating large ac loss.

AC loss can be reduced *only after the decay of coupling current*, which unfortunately decays quite slowly in non-twisted conductors.

How long does it take to decay of coupling current?

How long does it take?

We measured **coupling time constants,** τ_c , which is the decay time constants of coupling currents, in straight striated coated conductors.

Concept of SCSC cable

JST

How to decay coupling current quickly in copper-plated multifilament coated conductor?

Twisting round LTS wire

Twisting flat HTS tape

Winding copper-plated multifilament coated conductors spirally on a round core

SCSC cable (**double "SC" cable**, standing for Spiral Copper-plated Striated Coated-conductor cable)

CORC®-like cable with *copper-plated multifilament* coated conductors

Coupling currents in flat straight and spiral copper-plated multifilament coated conductors

 $L_c \sim$ entire length of coated conductor (L_s)

 L_c ~ half pitch of spiral along Coated conductor $(L_{p1}/2)$

KYOTO UNIVERSITY

Coupling current loop in SCSC cable

KYOTO UNIVERSITY

**JST
MIRA**

Experimental results: ac loss reduction

**JST
MIRAI**

Effect of spiral geometry to decouple filaments

We compare ac losses of

- straight copper-plated striated coated conductors and
- spiral copper-plated striated coated conductors.

Prepared straight and spiral samples

KYOTO UNIVERSITY

Magnetization losses in straight and spiral samples

Detailed magnetization loss characteristics of spiral copper-plated striated coated conductors

MIRA

Magnetization losses and their frequency dependences

Field-amplitude dependence of magnetization loss

Frequency dependence of magnetization loss

$$
Q_{\rm m} = Q_{\rm h} + kf
$$

京都大学

KYOTO UNIVERSITY

Specifications of samples

KYOTO UNIVERSITY

JST

Influence of filament width on hysteresis losses

Hysteresis losses can be reduced by decreasing filament width.

KYOTO UNIVERSITY

Influence of copper thickness on coupling losses

$$
Q_{\text{c,analytical}} = \frac{I - \mu_0 H_{\text{m}}^2}{1 - \mu_0 H_{\text{m}}^2} \cdot \frac{2 \pi f_1^2 \tau_c}{(2 \pi f_1^2 \tau_c)^2 + 1}
$$

Coupling losses loss can be reduced by decreasing copper thickness.

Influence of conductor (tape) width on coupling losses

Coupling losses loss can be reduced by decreasing conductor width.

Influence of core diameter on coupling losses

$$
Q_{\text{c,analytical}} = \frac{I - \mu_0 H_{\text{m}}^2}{1 - \mu_0 H_{\text{m}}^2} \cdot \frac{2 \pi f_1 \tau_{\text{c}}}{(2 \pi f_1 \tau_{\text{c}})^2 + 1}
$$

Coupling losses loss can be reduced by decreasing core diameter.

JST

Influence of core diameter on coupling losses – Suppl.

$$
Q_{\text{c,analytical}} = \frac{1}{4} A_{\text{c}} / \frac{\mu_0 H_{\text{m}}^2}{2} \cdot \frac{2 \pi f_{\text{c}} / \tau_{\text{c}}}{(2 \pi f_{\text{c}} / \tau_{\text{c}})^2 + 1}
$$

Coupling losses loss can be reduced by decreasing core diameter.

Summary of approach to reduce magnetization loss

- Hysteresis losses can be reduced
	- by decreasing filament width.
- Coupling losses loss can be reduced
	- by decreasing copper thickness,
	- by decreasing conductor width,
	- by decreasing core diameter.

$w_t = 2$ mm, $n_f = 10$ ($w_f = 0.2$ mm), $D_c = 3$ mm

KYOTO UNIVERSITY

Experimental results: current sharing, stability, and protection

Current sharing and *V–I* characteristics in copper-plated multifilament coated conductors

MIRA

Importance of current sharing and experimental arrangement

Specifications of samples and arrangement of voltage taps

Specifications of samples

KYOTO UNIVERSITY

**JST
MIRAI**

Current sharing and *V–I* **characteristics: with local defect**

KYOTO UNIVERSITY

Impact of striation on protection against quench / thermal runaway

Experimental setup and procedure

Current (A)

Current (A)

Current (A)

Example of voltages/currents/temperatures of thermal runaway detection and protection processes

**JST
MIRAI**

Summary of detection and protection against thermal runaways initiated at local bending defect

KYOTO UNIVERSITY

Conclusion

- The spiral geometry of copper-plated multifilament coated conductor decouples filaments electromagnetically and is effective to reduce magnetization losses.
- Copper plating allows current sharing between filaments and helps protection against quench / thermal runaway.