29 May 2018 to 3 June 2018
Hyatt Regency Indian Wells Conference Center
US/Pacific timezone

Current Status of Hydrodynamic Modeling from p+p to Heavy Ions

31 May 2018, 15:20
20m
South Foyer | Ocotillo Room (Hyatt Regency Indian Wells Conference Center)

South Foyer | Ocotillo Room

Hyatt Regency Indian Wells Conference Center

44600 Indian Wells Lane, Indian Wells, CA 92210, USA

Speaker

Ryan Weller (MIT)

Description

In recent years, suggestive signatures of collective flow-like behavior have been observed in p+p collisions at the LHC and also in light+heavy-ion collisions. We review hydrodynamic model calculations that reasonably describe the experimentally measured dNch/dη and v2,v3,v4 at η=0 in collisions from Pb+Pb down to p+p. Nevertheless, it is still uncertain whether the flow-like correlations in small collisions should be ascribed the same hydrodynamic origin as in heavy+heavy-ion collisions. Resolving this problem requires knowing (1) how a proton should impart its fluctuating shape on hydrodynamic initial data (e.g. ε2, ε3), and (2) in what situations hydrodynamics is justified. It turns out the entire non-hydrodynamic behavior of a system is encoded at large orders in the hydrodynamic gradient expansion, whose resummation yields a subset of microscopic system trajectories known as a hydrodynamic attractor. The behavior of trajectories near this attractor define an "off-equilibrium" version of hydrodynamics, whose applicability for small collisions is justified. This provides an answer to (2), but leaves (1), the choice of hydro initial data, as an open issue.
E-mail rweller@mit.edu
Funding source U.S. Department of Energy, under grant Contract Number DE-SC0011090

Primary author

Presentation materials