May 29, 2018 to June 3, 2018
Hyatt Regency Indian Wells Conference Center
US/Pacific timezone

Current Status of Hydrodynamic Modeling from $p$+$p$ to Heavy Ions

May 31, 2018, 3:20 PM
South Foyer | Ocotillo Room (Hyatt Regency Indian Wells Conference Center)

South Foyer | Ocotillo Room

Hyatt Regency Indian Wells Conference Center

44600 Indian Wells Lane, Indian Wells, CA 92210, USA


Ryan Weller (MIT)


In recent years, suggestive signatures of collective flow-like behavior have been observed in $p$+$p$ collisions at the LHC and also in light+heavy-ion collisions. We review hydrodynamic model calculations that reasonably describe the experimentally measured $dN_\mathrm{ch}/d\eta$ and $v_2,v_3,v_4$ at $\eta=0$ in collisions from Pb+Pb down to $p$+$p$. Nevertheless, it is still uncertain whether the flow-like correlations in small collisions should be ascribed the same hydrodynamic origin as in heavy+heavy-ion collisions. Resolving this problem requires knowing (1) how a proton should impart its fluctuating shape on hydrodynamic initial data (e.g. $\varepsilon_2$, $\varepsilon_3$), and (2) in what situations hydrodynamics is justified. It turns out the entire non-hydrodynamic behavior of a system is encoded at large orders in the hydrodynamic gradient expansion, whose resummation yields a subset of microscopic system trajectories known as a hydrodynamic attractor. The behavior of trajectories near this attractor define an "off-equilibrium" version of hydrodynamics, whose applicability for small collisions is justified. This provides an answer to (2), but leaves (1), the choice of hydro initial data, as an open issue.
E-mail [email protected]
Funding source U.S. Department of Energy, under grant Contract Number DE-SC0011090

Primary author

Presentation materials