Speaker
Prof.
Abner Soffer
(Tel Aviv University)
Description
We measure the mass difference, $\Delta m_+$, between the $D^\star (2010)^+$ and the $D^+$, using the decay chain $D^\star (2010)^+\to D^+ \pi^0$ with $D^+\to K^- \pi^+ \pi^+$. The data were recorded with the BaBar detector at center-of-mass energies at and near the $\Upsilon$(4S) resonance, and correspond to an integrated luminosity of approximately 468 fb$^{-1}$. We measure $\Delta m_+ = (140,601.0 \pm 6.8 \,[\mathrm{stat}] \pm 12.9 \, [\mathrm{syst}])$ keV. We combine this result with a previous BaBar measurement of $\Delta m_0\equiv m(D^\star(2010)^+) - m (D^0)$ to obtain $\Delta m_D = m(D^+) - m(D^0) = (4,824.9 \pm 6.8\,[\mathrm{stat}] \pm 12.9\,[\mathrm{syst}])$ keV. These results are compatible with, and approximately five times more precise than, previous world averages.
[email protected] | |
Collaboration name | BaBar |
Primary author
Prof.
Abner Soffer
(Tel Aviv University)