May 29, 2018 to June 3, 2018
Hyatt Regency Indian Wells Conference Center
US/Pacific timezone

Using X-Ray Femtoscope and X-Ray Telescope We Verified that Dark Matter Behaves as Catalyst or as Inhibitor of the Nuclear Reactions

Jun 1, 2018, 6:30 PM
East Foyer (Hyatt Regency Indian Wells Conference Center)

East Foyer

Hyatt Regency Indian Wells Conference Center

44600 Indian Wells Lane, Indian Wells, CA 92210, USA
Board: 8
Poster DM Poster Session


Prof. Edward Jimenez (Chemistry Engineering Faculty)


The X-ray femtoscope predictions: 1) Dark matter has resonances for the chemical elements Cr, Xe and Tm, which corresponds to the forces that gave the name to the WIMPs with adjustment of $R^2=0.996$. 2) Navier Stokes equations and solutions for the atomic nucleus are robust, since they naturally deliver the values of the following constants: neutron radius $r_n=0.843$ fm, measured for the first time, nuclear viscosity $9.77\times10^{22}\le ν \le 1.08\times10^{23}$ fm$^2$/s and Rydberg constant. 3) Dark matter produce nuclear catalysis. The X-ray telescope proofs: 1) Fluorescent dark matter has resonances in emission and absorption at low X-ray energies (3.5 keV). 2) Gravity appears indirectly through the first analytical solution to the millennium problem, associated with the Navier Stokes (NS) equations, which govern the stability of the incompressible nuclear fluid, and which have the range of magnitude of the gravity $10^{-30}$. 3) Dark matter interacts with baryonic matter as a catalyst or as an inhibitor, so it is not consumed in the nuclear reaction for Chandra X-Ray Galaxy Clusters at $z<1.4$.
E-mail [email protected]

Primary author

Prof. Edward Jimenez (Chemistry Engineering Faculty)

Presentation materials